Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 5(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34933920

RESUMO

The autophagy-lysosomal pathway is impaired in many neurodegenerative diseases characterized by protein aggregation, but the link between aggregation and lysosomal dysfunction remains poorly understood. Here, we combine cryo-electron tomography, proteomics, and cell biology studies to investigate the effects of protein aggregates in primary neurons. We use artificial amyloid-like ß-sheet proteins (ß proteins) to focus on the gain-of-function aspect of aggregation. These proteins form fibrillar aggregates and cause neurotoxicity. We show that late stages of autophagy are impaired by the aggregates, resulting in lysosomal alterations reminiscent of lysosomal storage disorders. Mechanistically, ß proteins interact with and sequester AP-3 µ1, a subunit of the AP-3 adaptor complex involved in protein trafficking to lysosomal organelles. This leads to destabilization of the AP-3 complex, missorting of AP-3 cargo, and lysosomal defects. Restoring AP-3µ1 expression ameliorates neurotoxicity caused by ß proteins. Altogether, our results highlight the link between protein aggregation, lysosomal impairments, and neurotoxicity.


Assuntos
Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/metabolismo , Mutação com Ganho de Função , Neurônios/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/ultraestrutura , Proteínas Amiloidogênicas/ultraestrutura , Sobrevivência Celular/genética , Expressão Gênica , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Neurônios/ultraestrutura , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , Transdução de Sinais
2.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575940

RESUMO

The development and testing of new antimicrobial peptides (AMPs) represent an important milestone toward the development of new antimicrobial drugs that can inhibit the growth of pathogens and multidrug-resistant microorganisms such as Pseudomonas aeruginosa, Gram-negative bacteria. Most AMPs achieve these goals through mechanisms that disrupt the normal permeability of the cell membrane, which ultimately leads to the death of the pathogenic cell. Here, we developed a unique combination of a membrane penetrating peptide and peptides prone to amyloidogenesis to create hybrid peptide: "cell penetrating peptide + linker + amyloidogenic peptide". We evaluated the antimicrobial effects of two peptides that were developed from sequences with different propensities for amyloid formation. Among the two hybrid peptides, one was found with antibacterial activity comparable to antibiotic gentamicin sulfate. Our peptides showed no toxicity to eukaryotic cells. In addition, we evaluated the effect on the antimicrobial properties of amino acid substitutions in the non-amyloidogenic region of peptides. We compared the results with data on the predicted secondary structure, hydrophobicity, and antimicrobial properties of the original and modified peptides. In conclusion, our study demonstrates the promise of hybrid peptides based on amyloidogenic regions of the ribosomal S1 protein for the development of new antimicrobial drugs against P. aeruginosa.


Assuntos
Proteínas Amiloidogênicas/genética , Proteínas Citotóxicas Formadoras de Poros/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Proteínas Ribossômicas/genética , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/farmacologia , Proteínas Amiloidogênicas/ultraestrutura , Antibacterianos/efeitos adversos , Humanos , Testes de Sensibilidade Microbiana , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/patogenicidade , Proteínas Ribossômicas/farmacologia , Proteínas Ribossômicas/ultraestrutura
3.
Int J Biol Macromol ; 188: 512-522, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34333005

RESUMO

The loss of crystallins solubility with aging and the formation of amyloid-like aggregates is considered the hallmark characteristic of cataract pathology. The present study was carried out to assess the effect of temperature on the soluble lens protein and the formation of protein aggregates with typical amyloid characteristics. The soluble fraction of lens proteins was subjected for heat treatment in the range of 40-60 °C, and the nature of protein aggregates was assessed by using Congo red (CR), thioflavin T (ThT), and 8-anilinonaphthalene-1-sulfonic acid (ANS) binding assays, circular dichroism (CD), Fourier-transform infrared (FT-IR) spectroscopy, and transmission electron microscopy (TEM). The heat-treated protein samples displayed a substantial bathochromic shift (≈15 nm) in the CR's absorption maximum (λmax) and increased ThT and ANS binding. The heat treatment of lens soluble proteins results in the formation of nontoxic, ß-sheet rich, non-fibrillar, protein aggregates similar to the structures evident in the insoluble fraction of proteins isolated from the cataractous lens. The data obtained from the present study suggest that the exposure of soluble lens proteins to elevated temperature leads to the formation of non-fibrillar aggregates, establishing the role of amyloid in the heat-induced augmentation of cataracts pathology.


Assuntos
Amiloide/ultraestrutura , Catarata/genética , Cristalinas/ultraestrutura , Agregados Proteicos/genética , Amiloide/química , Amiloide/genética , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/ultraestrutura , Catarata/patologia , Cristalinas/química , Cristalinas/genética , Humanos , Cristalino/química , Cristalino/ultraestrutura , Conformação Proteica em Folha beta , Solubilidade
4.
Chem Rev ; 121(13): 8285-8307, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34137605

RESUMO

This review will focus on the process of amyloid-type protein aggregation. Amyloid fibrils are an important hallmark of protein misfolding diseases and therefore have been investigated for decades. Only recently, however, atomic or near-atomic resolution structures have been elucidated from various in vitro and ex vivo obtained fibrils. In parallel, the process of fibril formation has been studied in vitro under highly artificial but comparatively reproducible conditions. The review starts with a summary of what is known and speculated from artificial in vitro amyloid-type protein aggregation experiments. A partially hypothetic fibril selection model will be described that may be suitable to explain why amyloid fibrils look the way they do, in particular, why at least all so far reported high resolution cryo-electron microscopy obtained fibril structures are in register, parallel, cross-ß-sheet fibrils that mostly consist of two protofilaments twisted around each other. An intrinsic feature of the model is the prion-like nature of all amyloid assemblies. Transferring the model from the in vitro point of view to the in vivo situation is not straightforward, highly hypothetic, and leaves many open questions that need to be addressed in the future.


Assuntos
Amiloide/química , Proteínas Amiloidogênicas/química , Príons/química , Agregados Proteicos , Amiloide/ultraestrutura , Proteínas Amiloidogênicas/ultraestrutura , Animais , Microscopia Crioeletrônica , Humanos , Príons/ultraestrutura
5.
J Biosci ; 462021.
Artigo em Inglês | MEDLINE | ID: mdl-33709966

RESUMO

Artemia cysts are the essential food product for industrial larviculture of fishes. The cyst shell protects the artemia embryo from mechanical damage, ultraviolet light, excessive water loss, thermal variation and anoxia condition. However, the underlying mechanism of such environmental protection is largely unclear. The embryonic cuticle of cyst shell mainly constitutes chitin and proteins. Absence of cyst shell proteins compromises embryo survival. In literature, there are few examples of functional amyloids where proteins adapt amyloid-like structures and act as protective covering. We hypothesized that the proteins from the embryonic cuticle of artemia cyst shell may have amyloid-like properties. Using FTIR and CD analysis, we found that proteins in embryonic cuticle have high ß-sheet secondary structures. Embryonic cuticles displayed high Congo red binding affinity and stained samples showed apple-green birefringence under polarized light, confirming the presence of amyloid-like structures. Amyloid structures have a tendency to propagate and cause amyloidosis. However, feeding of amyloid rich embryonic cuticles to zebrafish did not show any signs of discomfort or morbidity and amyloid deposition. Taken together, the study reveals that amyloid-like structures are present in embryonic cuticle of artemia cyst and their consumption does not induce amyloidosis in zebrafish.


Assuntos
Adaptação Fisiológica/genética , Proteínas Amiloidogênicas/química , Amiloidose/tratamento farmacológico , Artemia/química , Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/ultraestrutura , Animais , Vermelho Congo/química , Cistos/química , Estrutura Secundária de Proteína , Pele/química , Pele/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Molecules ; 26(4)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670093

RESUMO

The misfolding and aggregation of polypeptide chains into ß-sheet-rich amyloid fibrils is associated with a wide range of neurodegenerative diseases. Growing evidence indicates that the oligomeric intermediates populated in the early stages of amyloid formation rather than the mature fibrils are responsible for the cytotoxicity and pathology and are potentially therapeutic targets. However, due to the low-populated, transient, and heterogeneous nature of amyloid oligomers, they are hard to characterize by conventional bulk methods. The development of single molecule approaches provides a powerful toolkit for investigating these oligomeric intermediates as well as the complex process of amyloid aggregation at molecular resolution. In this review, we present an overview of recent progress in characterizing the oligomerization of amyloid proteins by single molecule fluorescence techniques, including single-molecule Förster resonance energy transfer (smFRET), fluorescence correlation spectroscopy (FCS), single-molecule photobleaching and super-resolution optical imaging. We discuss how these techniques have been applied to investigate the different aspects of amyloid oligomers and facilitate understanding of the mechanism of amyloid aggregation.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Proteínas Amiloidogênicas/química , Agregação Patológica de Proteínas/genética , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/ultraestrutura , Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/ultraestrutura , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Conformação Proteica em Folha beta/genética , Imagem Individual de Molécula , Espectrometria de Fluorescência
7.
Molecules ; 26(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673072

RESUMO

Oligomeric intermediates on the pathway of amyloid fibrillation are suspected as the main cytotoxins responsible for amyloid-related pathogenicity. As they appear to be a part of the lag phase of amyloid fibrillation when analyzed using standard methods such as Thioflavin T (ThT) fluorescence, a more sensitive method is needed for their detection. Here we apply Fourier transform infrared spectroscopy (FTIR) in attenuated total reflectance (ATR) mode for fast and cheap analysis of destabilized hen-egg-white lysozyme solution and detection of oligomer intermediates of amyloid fibrillation. Standard methods of protein aggregation analysis- Thioflavin T (ThT) fluorescence, atomic force microscopy (AFM), and 8-anilinonaphthalene-1-sulphonic acid (ANS) fluorescence were applied and compared to FTIR spectroscopy data. Results show the great potential of FTIR for both, qualitative and quantitative monitoring of oligomer formation based on the secondary structure changes. While oligomer intermediates do not induce significant changes in ThT fluorescence, their secondary structure changes were very prominent. Normalization of specific Amide I region peak intensities by using Amide II peak intensity as an internal standard provides an opportunity to use FTIR spectroscopy for both qualitative and quantitative analysis of biological samples and detection of potentially toxic oligomers, as well as for screening of efficiency of fibrillation procedures.


Assuntos
Amiloide/química , Proteínas Amiloidogênicas/química , Benzotiazóis/química , Muramidase/química , Amiloide/ultraestrutura , Proteínas Amiloidogênicas/ultraestrutura , Animais , Galinhas , Fluorescência , Microscopia de Força Atômica , Muramidase/ultraestrutura , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
8.
J Biol Chem ; 296: 100334, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33508322

RESUMO

Systemic light chain (AL) amyloidosis is a fatal protein misfolding disease in which excessive secretion, misfolding, and subsequent aggregation of free antibody light chains eventually lead to deposition of amyloid plaques in various organs. Patient-specific mutations in the antibody VL domain are closely linked to the disease, but the molecular mechanisms by which certain mutations induce misfolding and amyloid aggregation of antibody domains are still poorly understood. Here, we compare a patient VL domain with its nonamyloidogenic germline counterpart and show that, out of the five mutations present, two of them strongly destabilize the protein and induce amyloid fibril formation. Surprisingly, the decisive, disease-causing mutations are located in the highly variable complementarity determining regions (CDRs) but exhibit a strong impact on the dynamics of conserved core regions of the patient VL domain. This effect seems to be based on a deviation from the canonical CDR structures of CDR2 and CDR3 induced by the substitutions. The amyloid-driving mutations are not necessarily involved in propagating fibril formation by providing specific side chain interactions within the fibril structure. Rather, they destabilize the VL domain in a specific way, increasing the dynamics of framework regions, which can then change their conformation to form the fibril core. These findings reveal unexpected influences of CDR-framework interactions on antibody architecture, stability, and amyloid propensity.


Assuntos
Amiloide/ultraestrutura , Regiões Determinantes de Complementaridade/genética , Amiloidose de Cadeia Leve de Imunoglobulina/genética , Placa Amiloide/genética , Sequência de Aminoácidos/genética , Amiloide/genética , Amiloide/imunologia , Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/imunologia , Proteínas Amiloidogênicas/ultraestrutura , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/ultraestrutura , Humanos , Amiloidose de Cadeia Leve de Imunoglobulina/imunologia , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Mutação/genética , Placa Amiloide/imunologia , Placa Amiloide/patologia , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/imunologia , Agregação Patológica de Proteínas/patologia , Conformação Proteica , Dobramento de Proteína
9.
Amyloid ; 28(1): 56-65, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33026249

RESUMO

Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). Such inclusions have variably been described as amorphous aggregates or more structured deposits having amyloid properties. Here we have purified full-length TDP-43 (FL TDP-43) and its C-terminal domain (Ct TDP-43) to investigate the morphological, structural and tinctorial features of aggregates formed in vitro by them at pH 7.4 and 37 °C. AFM images indicate that both protein variants show a tendency to form filaments. Moreover, we show that both FL TDP-43 and Ct TDP-43 filaments possess a largely disordered secondary structure, as ascertained by far-UV circular dichroism and Fourier transform infra-red spectroscopy, do not bind Congo red and induce a very weak increase of thioflavin T fluorescence, indicating the absence of a clear amyloid-like signature.


Assuntos
Esclerose Amiotrófica Lateral/genética , Encéfalo/metabolismo , Proteínas de Ligação a DNA/genética , Demência Frontotemporal/genética , Amiloide/genética , Amiloide/ultraestrutura , Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/ultraestrutura , Esclerose Amiotrófica Lateral/patologia , Encéfalo/patologia , Encéfalo/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Escherichia coli/genética , Demência Frontotemporal/patologia , Humanos , Corpos de Inclusão/genética , Corpos de Inclusão/patologia , Corpos de Inclusão/ultraestrutura , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Conformação Proteica , Domínios Proteicos/genética , Estrutura Secundária de Proteína
10.
Sci Rep ; 10(1): 14466, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879381

RESUMO

Amyloidogenic protein assembly into insoluble fibrillar aggregates is linked with several neurodegenerative disorders, such as Alzheimer's or Parkinson's disease, affecting millions of people worldwide. The search for a potential anti-amyloid drug has led to the discovery of hundreds of compounds, none of which have passed all clinical trials. Gallic acid has been shown to both modulate factors leading to the onset of neurodegenerative disorders, as well as directly inhibit amyloid formation. However, the conditions under which this effect is seen could lead to oxidation of this polyphenol, likely changing its properties. Here we examine the effect of gallic acid and its oxidised form on the aggregation of a model amyloidogenic protein-insulin at low pH conditions. We show a vastly higher inhibitory potential of the oxidised form, as well as an alteration in the aggregation pathway, leading to the formation of a specific fibril conformation.


Assuntos
Amiloide/ultraestrutura , Proteínas Amiloidogênicas/ultraestrutura , Ácido Gálico/metabolismo , Insulina/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/metabolismo , Humanos , Insulina/genética , Redes e Vias Metabólicas/genética , Microscopia de Força Atômica , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Oxirredução , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo
11.
Int J Biol Macromol ; 163: 702-710, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32650012

RESUMO

The aggregation of ß-crystallins in the human eye lens constitutes a critical step during the development of cataract. We anticipated that the presence of Aggregation-Prone Regions (APRs) in their primary structure, which might be responsible for conformational change required for the self-assembly. To examine the presence of APRs, we systematically analyzed the primary structures of ß-crystallins. Out of seven subtypes, the ßB1-crystallin found to possess the highest aggregation score with 9 APRs in its primary structure. To confirm the amyloidogenic nature of these newly identified APRs, we further studied the aggregation behavior of one of the APRs spanning from 174 to 180 residues (174LWVYGFS180) of ßB1-crystallin, which is referred as ßB1(174-180). Under in vitro conditions, the synthetic analogue of ßB1(174-180) peptide formed visible aggregates and displayed high Congo red (CR) bathochromic shift, Thioflavin T (ThT) binding and fibrilar morphology under transmission electron microscopy, which are the typical characteristics of amyloids. Further, the aggregated ßB1(174-180) was found to induce aggregation of the soluble fraction of proteins isolated from the human cataractous lens. This observation suggests that the presence of APRs in ßB1-crystallin might be serving as one of the intrinsic supplementary factors responsible for constitutive aggregation behavior of ßB1-crystallin and development of cataract.


Assuntos
Proteínas Amiloidogênicas/química , Catarata , Cristalino/química , Agregados Proteicos , Cadeia B de beta-Cristalina/química , Adsorção , Proteínas Amiloidogênicas/isolamento & purificação , Proteínas Amiloidogênicas/metabolismo , Proteínas Amiloidogênicas/ultraestrutura , Amiloidose , Catarata/metabolismo , Fenômenos Químicos , Vermelho Congo/química , Cristalino/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica , Solubilidade , Relação Estrutura-Atividade , Cadeia B de beta-Cristalina/metabolismo
12.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331340

RESUMO

Tooth enamel is formed in an extracellular environment. Amelogenin, the major component in the protein matrix of tooth enamel during the developing stage, could assemble into high molecular weight structures, regulating enamel formation. However, the molecular structure of amelogenin protein assembly at the functional state is still elusive. In this work, we found that amelogenin is able to induce calcium phosphate minerals into hydroxyapatite (HAP) structure in vitro at pH 6.0. Assessed using X-ray diffraction (XRD) and 31P solid-state NMR (SSNMR) evidence, the formed HAP mimics natural enamel closely. The structure of amelogenin protein assembly coexisting with the HAP was also studied using atomic force microscopy (AFM), transmission electron microscopy (TEM) and XRD, indicating the ß-amyloid structure of the protein. SSNMR was proven to be an important tool in detecting both the rigid and dynamic components of the protein assembly in the sample, and the core sequence 18EVLTPLKWYQSI29 was identified as the major segment contributing to the ß-sheet secondary structure. Our research suggests an amyloid structure may be an important factor in controlling HAP formation at the right pH conditions with the help of other structural components in the protein assembly.


Assuntos
Amelogenina/metabolismo , Proteínas Amiloidogênicas/metabolismo , Durapatita/metabolismo , Amelogenina/química , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/ultraestrutura , Proteínas do Esmalte Dentário/química , Proteínas do Esmalte Dentário/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Agregados Proteicos , Agregação Patológica de Proteínas , Ligação Proteica , Proteínas Recombinantes , Análise Espectral , Relação Estrutura-Atividade
13.
Biosens Bioelectron ; 153: 112048, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32056662

RESUMO

In this report, we describe a near-infrared fluorescent probe called quinaldine red (QR) which lights up the ß-sheet structure of amyloid fibrils. The photochemical and biophysical properties of QR along with other canonical amyloid probes in the presence of protein fibrils were investigated by using fluorescence spectroscopy, confocal fluorescent microscopy and isothermal titration calorimetry. Moreover, the binding sites and interaction mode between QR and insulin fibrils were calculated based on molecule docking. Among these amyloid probes, QR showed several advantages including strong supramolecular force, near-infrared emission, high sensitivity and resistance to bleaching. A linear response of the fluorescence intensity of QR towards fibril samples in the presence of sera was visualized in the range of 1-30 µM, with the limit of detection (LOD) of 2.31 µM. The recovery and relative standard deviation (RSD) of the proposed method for the determination of protein fibrils was 90.4%-99.2% and 3.05%-3.47%, respectively. Finally, QR can be fluorescently lighted up when meeting the aberrant protein aggregates of pathogenic mice. We recommend QR as a novel and excellent alternative tool for monitoring conformational transition of amyloid proteins.


Assuntos
Proteínas Amiloidogênicas/isolamento & purificação , Técnicas Biossensoriais , Corantes Fluorescentes/química , Conformação Proteica em Folha beta , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/ultraestrutura , Animais , Raios Infravermelhos , Camundongos , Quinaldinas/química , Espectrometria de Fluorescência
14.
Cell Rep ; 30(4): 1117-1128.e5, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31995753

RESUMO

Prion-like proteins form multivalent assemblies and phase separate into membraneless organelles. Heterogeneous ribonucleoprotein D-like (hnRNPDL) is a RNA-processing prion-like protein with three alternative splicing (AS) isoforms, which lack none, one, or both of its two disordered domains. It has been suggested that AS might regulate the assembly properties of RNA-processing proteins by controlling the incorporation of multivalent disordered regions in the isoforms. This, in turn, would modulate their activity in the downstream splicing program. Here, we demonstrate that AS controls the phase separation of hnRNPDL, as well as the size and dynamics of its nuclear complexes, its nucleus-cytoplasm shuttling, and amyloidogenicity. Mutation of the highly conserved D378 in the disordered C-terminal prion-like domain of hnRNPDL causes limb-girdle muscular dystrophy 1G. We show that D378H/N disease mutations impact hnRNPDL assembly properties, accelerating aggregation and dramatically reducing the protein solubility in the muscle of Drosophila, suggesting a genetic loss-of-function mechanism for this muscular disorder.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Núcleo Celular/metabolismo , Drosophila/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/metabolismo , Distrofia Muscular do Cíngulo dos Membros/genética , Agregação Patológica de Proteínas/metabolismo , Processamento Alternativo , Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/ultraestrutura , Animais , Núcleo Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Dactinomicina/farmacologia , Drosophila/metabolismo , Técnicas de Inativação de Genes , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/ultraestrutura , Humanos , Cinética , Microscopia Eletrônica de Transmissão , Células Musculares/metabolismo , Células Musculares/patologia , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Mutação , Agregação Patológica de Proteínas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestrutura
15.
J Mol Biol ; 432(2): 585-596, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31518613

RESUMO

Aggregation of amyloidogenic proteins is an abnormal biological process implicated in neurodegenerative disorders. Whereas the aggregation process of amyloid-forming proteins has been studied extensively, the mechanism of aggregate removal is poorly understood. We recently demonstrated that proteasomes could fragment filamentous aggregates into smaller entities, restricting aggregate size [1]. Here, we show in vitro that UBE2W can modify the N-terminus of both α-synuclein and a tau tetra-repeat domain with a single ubiquitin. We demonstrate that an engineered N-terminal ubiquitin modification changes the aggregation process of both proteins, resulting in the formation of structurally distinct aggregates. Single-molecule approaches further reveal that the proteasome can target soluble oligomers assembled from ubiquitin-modified proteins independently of its peptidase activity, consistent with our recently reported fibril-fragmenting activity. Based on these results, we propose that proteasomes are able to target oligomers assembled from N-terminally ubiquitinated proteins. Our data suggest a possible disassembly mechanism by which N-terminal ubiquitination and the proteasome may together impede aggregate formation.


Assuntos
Proteínas Amiloidogênicas/genética , Doenças Neurodegenerativas/genética , Enzimas de Conjugação de Ubiquitina/genética , alfa-Sinucleína/genética , Proteínas tau/genética , Proteínas Amiloidogênicas/ultraestrutura , Citoplasma/genética , Citoplasma/ultraestrutura , Holoenzimas/genética , Holoenzimas/ultraestrutura , Humanos , Doenças Neurodegenerativas/patologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Agregação Patológica de Proteínas/genética , Domínios Proteicos , Multimerização Proteica , Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/ultraestrutura , Ubiquitinação/genética , alfa-Sinucleína/ultraestrutura , Proteínas tau/ultraestrutura
16.
J Mol Biol ; 432(2): 396-409, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31711963

RESUMO

In dialysis patients, the protein ß2-microglobulin (ß2m) forms amyloid fibrils in a condition known as dialysis-related amyloidosis. To understand the early stages of the amyloid assembly process, we have used native electrospray ionization (ESI) together with ion mobility mass spectrometry (IM-MS) to study soluble preamyloid oligomers. ESI-IM-MS reveals the presence of multiple conformers for the dimer, tetramer, and hexamer that precede the Cu(II)-induced amyloid assembly process, results which are distinct from ß2m oligomers formed at low pH. Experimental and computational results indicate that the predominant dimer is a Cu(II)-bound structure with an antiparallel side-by-side configuration. In contrast, tetramers exist in solution in both Cu(II)-bound and Cu(II)-free forms. Selective depletion of Cu(II)-bound species results in two primary conformers-one that is compact and another that is more expanded. Molecular modeling and molecular dynamics simulations identify models for these two tetrameric conformers with unique interactions and interfaces that enthalpically compensate for the loss of Cu(II). Unlike with other amyloid systems in which conformational heterogeneity is often associated with different amyloid morphologies or off-pathway events, conformational heterogeneity in the tetramer seems to be a necessary aspect of Cu(II)-induced amyloid formation by ß2m. Moreover, the Cu(II)-free models represent a new advance in our understanding of Cu(II) release in Cu(II)-induced amyloid formation, laying a foundation for further mechanistic studies as well as development of new inhibition strategies.


Assuntos
Amiloide/ultraestrutura , Proteínas Amiloidogênicas/ultraestrutura , Amiloidose/genética , Microglobulina beta-2/ultraestrutura , Amiloide/genética , Proteínas Amiloidogênicas/genética , Amiloidose/patologia , Cobre/química , Diálise , Humanos , Espectrometria de Mobilidade Iônica , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Multimerização Proteica/genética , Espectrometria de Massas por Ionização por Electrospray , Microglobulina beta-2/genética
17.
J Mol Biol ; 432(2): 467-483, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31805282

RESUMO

The RNA-binding protein fused in sarcoma (FUS) forms physiological granules and pathological fibrils, which facilitate RNA functions and cause neurodegenerative diseases, respectively. Phosphorylation at Ser/Thr residues may regulate the functional assembly of FUS and prevent pathological aggregation in cells. However, the low-complexity nature of the FUS sequence makes it challenging to characterize how phosphorylation of specific sites within the core amyloid-forming segment affects aggregation. Taking advantage of the recently solved molecular structures of the fibrillar core of the FUS low-complexity (FUS-LC) domain, we systematically investigated the aggregation of repeated segments within the core. We identified a segment with a strong amyloid-forming tendency that induced the aggregation of FUS-LC domain in phase-separated liquid droplets and further seeded the aggregation of full-length FUS. The aggregation propensity and seeding ability of this amyloid-forming segment were modulated by site-specific phosphorylation. Solid-state nuclear magnetic resonance (NMR) spectroscopy and computational modeling implied that site-specific phosphorylation at Ser61 plays key roles in FUS assembly by disrupting both intra- and intermolecular interactions that maintain the amyloid core structure.


Assuntos
Amiloide/genética , Amiloidose/genética , Agregação Patológica de Proteínas/genética , Proteína FUS de Ligação a RNA/genética , Proteínas de Ligação a RNA/genética , Amiloide/ultraestrutura , Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/ultraestrutura , Amiloidose/patologia , Humanos , Estrutura Molecular , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Ressonância Magnética Nuclear Biomolecular , Fosforilação/genética , Agregação Patológica de Proteínas/patologia , Conformação Proteica , Domínios Proteicos/genética , Proteína FUS de Ligação a RNA/ultraestrutura , Proteínas de Ligação a RNA/ultraestrutura
18.
Int J Mol Sci ; 20(21)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661810

RESUMO

The adsorption of amyloidogenic peptides, amyloid beta 1-40 (Aß1-40), alpha-synuclein (α-syn), and beta 2 microglobulin (ß2m), was attempted over the surface of nano-gold colloidal particles, ranging from d = 10 to 100 nm in diameter (d). The spectroscopic inspection between pH 2 and pH 12 successfully extracted the critical pH point (pHo) at which the color change of the amyloidogenic peptide-coated nano-gold colloids occurred due to aggregation of the nano-gold colloids. The change in surface property caused by the degree of peptide coverage was hypothesized to reflect the ΔpHo, which is the difference in pHo between bare gold colloids and peptide coated gold colloids. The coverage ratio (Θ) for all amyloidogenic peptides over gold colloid of different sizes was extracted by assuming Θ = 0 at ΔpHo = 0. Remarkably, Θ was found to have a nano-gold colloidal size dependence, however, this nano-size dependence was not simply correlated with d. The geometric analysis and simulation of reproducing Θ was conducted by assuming a prolate shape of all amyloidogenic peptides. The simulation concluded that a spiking-out orientation of a prolate was required in order to reproduce the extracted Θ. The involvement of a secondary layer was suggested; this secondary layer was considered to be due to the networking of the peptides. An extracted average distance of networking between adjacent gold colloids supports the binding of peptides as if they are "entangled" and enclosed in an interfacial distance that was found to be approximately 2 nm. The complex nano-size dependence of Θ was explained by available spacing between adjacent prolates. When the secondary layer was formed, Aß1-40 and α-syn possessed a higher affinity to a partially negative nano-gold colloidal surface. However, ß2m peptides tend to interact with each other. This difference was explained by the difference in partial charge distribution over a monomer. Both Aß1-40 and α-syn are considered to have a partial charge (especially δ+) distribution centering around the prolate axis. The ß2m, however, possesses a distorted charge distribution. For a lower Θ (i.e., Θ <0.5), a prolate was assumed to conduct a gyration motion, maintaining the spiking-out orientation to fill in the unoccupied space with a tilting angle ranging between 5° and 58° depending on the nano-scale and peptide coated to the gold colloid.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/ultraestrutura , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/ultraestrutura , Coloide de Ouro/química , Adsorção , Coloides/química , Ouro/química , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Simulação de Dinâmica Molecular , Nanogéis/química , Nanogéis/ultraestrutura , Tamanho da Partícula , Análise Espectral , Propriedades de Superfície , alfa-Sinucleína/química , alfa-Sinucleína/ultraestrutura , Microglobulina beta-2/química , Microglobulina beta-2/ultraestrutura
19.
J Biosci ; 44(2)2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31180059

RESUMO

Flavonoids are polyphenol compounds abundantly found in plants and reported to have an inhibitory effect on amyloid fibrillation. The number and position of hydroxyl groups, as well as the arrangement of flavonoids rings, may influence their inhibitory effects. In this study, we investigate the effect of structural characteristics of flavonoids on amyloid fibril formation. For this purpose, five compounds (i.e., biochanin A, daidzein, quercetin, chrysin and fisetin) were selected that represent a variety in the number and position of their hydroxyl groups. The inhibitory effect of these flavonoids on the amyloid fibril formation of apo-carbonic anhydrase (apo-BCA), as a model protein, was evaluated using thioflavin T and transmission electron microscopy. The results showed that fisetin possessed the most significant inhibitory effect. Interestingly, upon apo-BCA acetylation, none of the tested flavonoids could inhibit the fibrillation process, which indicates that the interactions of these compounds with the amine groups of lysine residues could be somewhat important.


Assuntos
Proteínas Amiloidogênicas/química , Apoproteínas/química , Anidrases Carbônicas/química , Flavonoides/química , Acetilação , Proteínas Amiloidogênicas/ultraestrutura , Apoproteínas/ultraestrutura , Benzotiazóis/química , Anidrases Carbônicas/ultraestrutura , Flavonóis , Corantes Fluorescentes/química , Genisteína/química , Isoflavonas/química , Quercetina/química , Soluções , Relação Estrutura-Atividade
20.
Sci Rep ; 9(1): 2530, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792475

RESUMO

In order to investigate the early phase of the amyloid formation by the short amyloidogenic octapeptide sequence ('NFGAILSS') derived from IAPP, we carried out a 100ns all-atom molecular dynamics (MD) simulations of systems that contain 27 peptides and over 30,000 water molecules. The large-scale calculations were performed for the wild type sequence and seven alanine-scanned sequences using AMBER 8.0 on RIKEN's special purpose MD-GRAPE3 supercomputer, using the all-atom point charge force field ff99, which do not favor ß-structures. Large peptide clusters (size 18-26 mers) were observed for all simulations, and our calculations indicated that isoleucine at position 5 played important role in the formation of ß-rich clusters. In the oligomeric state, the wild type and the S7A sequences had the highest ß-structure content (~14%), as calculated by DSSP, in line with experimental observations, whereas I5A and G3A had the highest helical content (~20%). Importantly, the ß-structure preferences of wild type IAPP originate from its association into clusters and are not intrinsic to its sequence. Altogether, the results of this first large-scale, multi-peptide all-atom molecular dynamics simulation appear to provide insights into the mechanism of amyloidogenic and non-amyloidogenic oligomers that mainly corroborate previous experimental observations.


Assuntos
Amiloide/química , Proteínas Amiloidogênicas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/ultraestrutura , Simulação de Dinâmica Molecular , Alanina/química , Sequência de Aminoácidos/genética , Amiloide/ultraestrutura , Proteínas Amiloidogênicas/ultraestrutura , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Conformação Proteica em Folha beta/genética , Estrutura Secundária de Proteína , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...